Prompt templates
This section documents the prompt template classes.
prompt_templates.prompt_templates
BasePromptTemplate
Bases: ABC
An abstract base class for prompt templates.
This class defines the common interface and shared functionality for all prompt templates. Users should not instantiate this class directly, but instead use TextPromptTemplate or ChatPromptTemplate, which are subclasses of BasePromptTemplate.
Source code in prompt_templates/prompt_templates.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
|
__init__
__init__(template, template_variables=None, metadata=None, client_parameters=None, custom_data=None, populator='jinja2', jinja2_security_level='standard')
Initialize a prompt template.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
template |
Union[str, List[Dict[str, Any]]]
|
The template string or list of message dictionaries. |
required |
template_variables |
Optional[List[str]]
|
List of variables used in the template. |
None
|
metadata |
Optional[Dict[str, Any]]
|
Dictionary of metadata about the template. |
None
|
client_parameters |
Optional[Dict[str, Any]]
|
Dictionary of parameters for the inference client (e.g., temperature, model). |
None
|
custom_data |
Optional[Dict[str, Any]]
|
Dictionary of custom data which does not fit into the other categories. |
None
|
populator |
PopulatorType
|
The populator to use. Choose from Literal["jinja2", "double_brace_regex", "single_brace_regex"]. Defaults to "jinja2". |
'jinja2'
|
jinja2_security_level |
Jinja2SecurityLevel
|
Security level for Jinja2 populator. Choose from Literal["strict", "standard", "relaxed"]. Defaults to "standard". |
'standard'
|
Source code in prompt_templates/prompt_templates.py
populate_template
abstractmethod
Abstract method to populate the prompt template with user-provided variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**user_provided_variables |
Any
|
The values to fill placeholders in the template. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
PopulatedPrompt |
PopulatedPrompt
|
A PopulatedPrompt object containing the populated content. |
Source code in prompt_templates/prompt_templates.py
save_to_hub
save_to_hub(repo_id, filename, repo_type='dataset', format=None, yaml_library='ruamel', prettify_template=True, token=None, create_repo=False, private=False, resource_group_id=None, revision=None, create_pr=False, commit_message=None, commit_description=None, parent_commit=None)
Save the prompt template to the Hugging Face Hub as a YAML or JSON file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
repo_id |
str
|
The repository ID on the Hugging Face Hub (e.g., "username/repo-name") |
required |
filename |
str
|
Name of the file to save (e.g., "prompt.yaml" or "prompt.json") |
required |
repo_type |
str
|
Type of repository ("dataset", "model", or "space"). Defaults to "dataset" |
'dataset'
|
token |
Optional[str]
|
Hugging Face API token. If None, will use token from environment |
None
|
commit_message |
Optional[str]
|
Custom commit message. If None, uses default message |
None
|
create_repo |
bool
|
Whether to create the repository if it doesn't exist. Defaults to False |
False
|
format |
Optional[Literal['yaml', 'json']]
|
Output format ("yaml" or "json"). If None, inferred from filename extension |
None
|
yaml_library |
str
|
YAML library to use ("ruamel" or "pyyaml"). Defaults to "ruamel" for better formatting and format preservation. |
'ruamel'
|
prettify_template |
bool
|
If true format the template content with literal block scalars, i.e. "|-" in yaml. This makes the string behave like a Python '''...''' block to make strings easier to read and edit. Defaults to True |
True
|
private |
bool
|
Whether to create a private repository. Defaults to False |
False
|
resource_group_id |
Optional[str]
|
Optional resource group ID to associate with the repository |
None
|
revision |
Optional[str]
|
Optional branch/revision to push to. Defaults to main branch |
None
|
create_pr |
bool
|
Whether to create a Pull Request instead of pushing directly. Defaults to False |
False
|
commit_description |
Optional[str]
|
Optional commit description |
None
|
parent_commit |
Optional[str]
|
Optional parent commit to create PR from |
None
|
Returns:
Name | Type | Description |
---|---|---|
CommitInfo |
CommitInfo
|
Information about the commit/PR |
Examples:
>>> from prompt_templates import ChatPromptTemplate
>>> messages_template = [
... {"role": "system", "content": "You are a coding assistant who explains concepts clearly and provides short examples."},
... {"role": "user", "content": "Explain what {{concept}} is in {{programming_language}}."}
... ]
>>> template_variables = ["concept", "programming_language"]
>>> metadata = {
... "name": "Code Teacher",
... "description": "A simple chat prompt for explaining programming concepts with examples",
... "tags": ["programming", "education"],
... "version": "0.0.1",
... "author": "My Awesome Company"
... }
>>> prompt_template = ChatPromptTemplate(
... template=messages_template,
... template_variables=template_variables,
... metadata=metadata,
... )
>>> prompt_template.save_to_hub(
... repo_id="MoritzLaurer/example_prompts_test",
... filename="code_teacher_test.yaml",
... #create_repo=True, # if the repo does not exist, create it
... #private=True, # if you want to create a private repo
... #token="hf_..."
... )
'https://huggingface.co/MoritzLaurer/example_prompts_test/blob/main/code_teacher_test.yaml'
Source code in prompt_templates/prompt_templates.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
save_to_local
Save the prompt template as a local YAML or JSON file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Union[str, Path]
|
Path where to save the file. Can be string or Path object |
required |
format |
Optional[Literal['yaml', 'json']]
|
Output format ("yaml" or "json"). If None, inferred from filename |
None
|
yaml_library |
str
|
YAML library to use ("ruamel" or "pyyaml"). Defaults to "ruamel" for better formatting and format preservation. |
'ruamel'
|
prettify_template |
bool
|
If true format the template content with literal block scalars, i.e. "|-" in yaml. This makes the string behave like a Python '''...''' block to make strings easier to read and edit. Defaults to True |
True
|
Examples:
>>> from prompt_templates import ChatPromptTemplate
>>> messages_template = [
... {"role": "system", "content": "You are a coding assistant who explains concepts clearly and provides short examples."},
... {"role": "user", "content": "Explain what {{concept}} is in {{programming_language}}."}
... ]
>>> template_variables = ["concept", "programming_language"]
>>> metadata = {
... "name": "Code Teacher",
... "description": "A simple chat prompt for explaining programming concepts with examples",
... "tags": ["programming", "education"],
... "version": "0.0.1",
... "author": "My Awesome Company"
... }
>>> prompt_template = ChatPromptTemplate(
... template=messages_template,
... template_variables=template_variables,
... metadata=metadata,
... )
>>> prompt_template.save_to_local("code_teacher_test.yaml")
Source code in prompt_templates/prompt_templates.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
display
Display the prompt configuration in the specified format.
Examples:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="translate.yaml"
... )
>>> prompt_template.display(format="yaml")
template: 'Translate the following text to {language}:
{text}'
template_variables:
- language
- text
metadata:
name: Simple Translator
description: A simple translation prompt for illustrating the standard prompt YAML
format
tags:
- translation
- multilinguality
version: 0.0.1
author: Some Person
Source code in prompt_templates/prompt_templates.py
TextPromptTemplate
Bases: BasePromptTemplate
A class representing a standard text prompt template.
Examples:
Instantiate a text prompt template:
>>> from prompt_templates import TextPromptTemplate
>>> template_text = "Translate the following text to {{language}}:\n{{text}}"
>>> template_variables = ["language", "text"]
>>> metadata = {
... "name": "Simple Translator",
... "description": "A simple translation prompt for illustrating the standard prompt YAML format",
... "tags": ["translation", "multilinguality"],
... "version": "0.0.1",
... "author": "Some Person"
}
>>> prompt_template = TextPromptTemplate(
... template=template_text,
... template_variables=template_variables,
... metadata=metadata
... )
>>> print(prompt_template)
TextPromptTemplate(template='Translate the following text to {{language}}:\n{{text}}', template_variables=['language', 'text'], metadata={'name': 'Simple Translator', 'description': 'A simple translation prompt for illustrating the standard prompt YAML format', 'tags': ['translation', 'multilinguality'], 'version': '0.0.1', 'author': 'Some Person'}, custom_data={}, populator='jinja2')
>>> # Inspect template attributes
>>> prompt_template.template
'Translate the following text to {language}:\n{text}'
>>> prompt_template.template_variables
['language', 'text']
>>> prompt_template.metadata['name']
'Simple Translator'
>>> # Populate the template
>>> prompt = prompt_template.populate_template(
... language="French",
... text="Hello world!"
... )
>>> print(prompt)
'Translate the following text to French:\nHello world!'
Or download the same text prompt template from the Hub:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template_downloaded = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="translate.yaml"
... )
>>> prompt_template_downloaded == prompt_template
True
Source code in prompt_templates/prompt_templates.py
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
|
populate_template
Populate the prompt by replacing placeholders with provided values.
Examples:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="translate.yaml"
... )
>>> prompt_template.template
'Translate the following text to {language}:\n{text}'
>>> prompt = prompt_template.populate_template(
... language="French",
... text="Hello world!"
... )
>>> print(prompt)
'Translate the following text to French:\nHello world!'
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**user_provided_variables |
Any
|
The values to fill placeholders in the prompt template. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
PopulatedPrompt |
PopulatedPrompt
|
A PopulatedPrompt object containing the populated prompt string. |
Source code in prompt_templates/prompt_templates.py
to_langchain_template
Convert the TextPromptTemplate to a LangChain PromptTemplate.
Examples:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="translate.yaml"
... )
>>> lc_template = prompt_template.to_langchain_template()
>>> # test equivalence
>>> from langchain_core.prompts import PromptTemplate as LC_PromptTemplate
>>> isinstance(lc_template, LC_PromptTemplate)
True
Returns:
Name | Type | Description |
---|---|---|
PromptTemplate |
PromptTemplate
|
A LangChain PromptTemplate object. |
Raises:
Type | Description |
---|---|
ImportError
|
If LangChain is not installed. |
Source code in prompt_templates/prompt_templates.py
ChatPromptTemplate
Bases: BasePromptTemplate
A class representing a chat prompt template that can be formatted for and used with various LLM clients.
Examples:
Instantiate a chat prompt template:
>>> from prompt_templates import ChatPromptTemplate
>>> template_messages = [
... {"role": "system", "content": "You are a coding assistant who explains concepts clearly and provides short examples."},
... {"role": "user", "content": "Explain what {{concept}} is in {{programming_language}}."}
... ]
>>> template_variables = ["concept", "programming_language"]
>>> metadata = {
... "name": "Code Teacher",
... "description": "A simple chat prompt for explaining programming concepts with examples",
... "tags": ["programming", "education"],
... "version": "0.0.1",
... "author": "My Awesome Company"
... }
>>> prompt_template = ChatPromptTemplate(
... template=template_messages,
... template_variables=template_variables,
... metadata=metadata
... )
>>> print(prompt_template)
ChatPromptTemplate(template=[{'role': 'system', 'content': 'You are a coding a..., template_variables=['concept', 'programming_language'], metadata={'name': 'Code Teacher', 'description': 'A simple ..., custom_data={}, populator='jinja2')
>>> # Inspect template attributes
>>> prompt_template.template
[{'role': 'system', 'content': 'You are a coding assistant who explains concepts clearly and provides short examples.'}, {'role': 'user', 'content': 'Explain what {concept} is in {programming_language}.'}]
>>> prompt_template.template_variables
['concept', 'programming_language']
>>> # Populate the template
>>> messages = prompt_template.populate_template(
... concept="list comprehension",
... programming_language="Python"
... )
>>> print(messages)
[{'role': 'system', 'content': 'You are a coding assistant who explains concepts clearly and provides short examples.'}, {'role': 'user', 'content': 'Explain what list comprehension is in Python.'}]
>>> # By default, the populated prompt is in the OpenAI messages format, as it is adopted by many open-source libraries
>>> # You can convert to formats used by other LLM clients like Anthropic's or Google Gemini's like this:
>>> messages_anthropic = prompt.format_for_client("anthropic")
>>> print(messages_anthropic)
{'system': 'You are a coding assistant who explains concepts clearly and provides short examples.', 'messages': [{'role': 'user', 'content': 'Explain what list comprehension is in Python.'}]}
>>> # Convenience method to populate and format in one step for clients that do not use the OpenAI messages format
>>> messages_anthropic = prompt_template.create_messages(
... client="anthropic",
... concept="list comprehension",
... programming_language="Python"
... )
>>> print(messages_anthropic)
{'system': 'You are a coding assistant who explains concepts clearly and provides short examples.', 'messages': [{'role': 'user', 'content': 'Explain what list comprehension is in Python.'}]}
Or download the same chat prompt template from the Hub:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template_downloaded = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="code_teacher.yaml"
... )
>>> prompt_template_downloaded == prompt_template
True
Source code in prompt_templates/prompt_templates.py
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
|
populate_template
Populate the prompt template messages by replacing placeholders with provided values.
Examples:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="code_teacher.yaml"
... )
>>> messages = prompt_template.populate_template(
... concept="list comprehension",
... programming_language="Python"
... )
>>> print(messages)
[{'role': 'system', 'content': 'You are a coding assistant who explains concepts clearly and provides short examples.'}, {'role': 'user', 'content': 'Explain what list comprehension is in Python.'}]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**user_provided_variables |
Any
|
The values to fill placeholders in the messages template. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
PopulatedPrompt |
PopulatedPrompt
|
A PopulatedPrompt object containing the populated messages prompt. |
Source code in prompt_templates/prompt_templates.py
create_messages
Convenience method that populates a prompt template and formats it for a client in one step. This method is only useful if your a client that does not use the OpenAI messages format, because populating a ChatPromptTemplate converts it into the OpenAI messages format by default.
Examples:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="code_teacher.yaml"
... )
>>> # Format for OpenAI (default)
>>> messages = prompt_template.create_messages(
... concept="list comprehension",
... programming_language="Python"
... )
>>> print(messages)
[{'role': 'system', 'content': 'You are a coding assistant who explains concepts clearly and provides short examples.'}, {'role': 'user', 'content': 'Explain what list comprehension is in Python.'}]
>>> # Format for Anthropic
>>> messages = prompt_template.create_messages(
... client="anthropic",
... concept="list comprehension",
... programming_language="Python"
... )
>>> messages
{'system': 'You are a coding assistant who explains concepts clearly and provides short examples.', 'messages': [{'role': 'user', 'content': 'Explain what list comprehension is in Python.'}]}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
client |
str
|
The client format to use ('openai', 'anthropic', 'google'). Defaults to 'openai'. |
'openai'
|
**user_provided_variables |
Any
|
The variables to fill into the prompt template. For example, if your template expects variables like 'name' and 'age', pass them as keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
PopulatedPrompt |
PopulatedPrompt
|
A populated prompt formatted for the specified client. |
Source code in prompt_templates/prompt_templates.py
to_langchain_template
Convert the ChatPromptTemplate to a LangChain ChatPromptTemplate.
Examples:
>>> from prompt_templates import PromptTemplateLoader
>>> prompt_template = PromptTemplateLoader.from_hub(
... repo_id="MoritzLaurer/example_prompts",
... filename="code_teacher.yaml"
... )
>>> lc_template = prompt_template.to_langchain_template()
>>> # test equivalence
>>> from langchain_core.prompts import ChatPromptTemplate as LC_ChatPromptTemplate
>>> isinstance(lc_template, LC_ChatPromptTemplate)
True
Returns:
Name | Type | Description |
---|---|---|
ChatPromptTemplate |
ChatPromptTemplate
|
A LangChain ChatPromptTemplate object. |
Raises:
Type | Description |
---|---|
ImportError
|
If LangChain is not installed. |
Source code in prompt_templates/prompt_templates.py
TemplatePopulator
Bases: ABC
Abstract base class for template populating strategies.
Source code in prompt_templates/prompt_templates.py
populate
abstractmethod
SingleBracePopulator
Bases: TemplatePopulator
Template populator using regex for basic {var} substitution.
Source code in prompt_templates/prompt_templates.py
DoubleBracePopulator
Bases: TemplatePopulator
Template populator using regex for {{var}} substitution.
Source code in prompt_templates/prompt_templates.py
Jinja2TemplatePopulator
Bases: TemplatePopulator
Jinja2 template populator with configurable security levels.
Security Levels
- strict: Minimal set of features, highest security Filters: lower, upper, title, safe Tests: defined, undefined, none Env: autoescape=True, no caching, no globals, no auto-reload
- standard (default): Balanced set of features Filters: lower, upper, title, capitalize, trim, strip, replace, safe, int, float, join, split, length Tests: defined, undefined, none, number, string, sequence Env: autoescape=True, limited caching, basic globals, no auto-reload
- relaxed: Default Jinja2 behavior (use with trusted templates only) All default Jinja2 features enabled Env: autoescape=False, full caching, all globals, auto-reload allowed
Parameters:
Name | Type | Description | Default |
---|---|---|---|
security_level |
Jinja2SecurityLevel
|
Level of security restrictions ("strict", "standard", "relaxed") |
'standard'
|
Source code in prompt_templates/prompt_templates.py
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 |
|
populate
Populate the template with given user_provided_variables.
Source code in prompt_templates/prompt_templates.py
get_variable_names
Extract variable names from template.